快三大发_快三大发
快三大发2023-01-31 16:05

快三大发

经历“最冷假期”后,华强北商户寻找“春天”******

  阅读提示

  在严查货品来源的管理要求下,“水货”手机逐渐失去生存空间,深圳华强北的大批手机商户遭遇“最冷假期”。不过,他们借助之前的经验积累,纷纷谋求新的出路。有的将销售渠道从线下搬到线上,还有的转向回收、销售国产或国行二手手机。

  走进位于深圳市福田区的华强北飞扬时代大厦,记者发现高高悬挂在天花板上的大红色横幅显得格外醒目——“依法依规经营,严禁销售无合法来源产品”。

  “我们严格查验货品来源,要求出示相关凭证、发票、收据等材料证明来源合法,才允许售卖。”近日,飞扬时代大厦市场管理处工作人员向记者透露。

  “守一天,亏一天”“一部手机只能挣百元差价,利润减半”“有客询价却无货”……在严查货品来源的管理要求下,“水货”手机逐渐失去生存空间,华强北飞扬时代大厦的大批手机摊贩面临集体转型。

  告别“水货”后,华强北商户该何去何从?记者采访了解到,商户们借助之前的经验积累,纷纷谋求新的出路。有的将销售渠道从线下搬到线上,有的尝试将“战场”转向回收、销售国产或国行二手手机。

  借助从业经验实现转型

  销售二手手机,尤其是“水货”手机,对华强北倒卖二手手机的年轻人(被称为“背包客”)而言,曾是一项具有售后风险的工作。为了避免售后问题,验货、测试是“背包客”的必备技能。

  “拿回去有问题的手机,‘档口’老板不认账,不肯退换,就只能自己花钱修好。”“背包客”钟杰直言,自己也曾因拿了问题机吃过亏。如果问题手机导致客户退货,“背包客”不仅要承担来回几十元的邮费,还会耽误客户销售,影响信誉。

  在飞扬时代大厦,售卖、维修、物流服务实现了“一条龙”。“背包客”们在档口拿到货后,测试发现有问题,不出大厦就能解决维修问题。一些“背包客”还懂得一些简单的维修技术。“货运过来都是没有修理过的。拿货时,只能将同一型号的整批货都拿走,不能挑选,质量参差不齐。”凭借长期的经验积累,遇到一些小问题,“背包客”林冲锋逐渐学会了如何维修。

  在转型过程中,档口老板和“背包客”们利用先前的经验积累,或开设线下实体店回收、转卖国行或国产二手手机,或通过分享手机挑选、使用、维修的一些小技巧吸引一批粉丝,拓展客户来源,开辟线上销售渠道。

  转卖国行“靓机”

  “iPhone12,128G,国行双卡双待全网通5G,价格2580元”“高价回收,好坏二手手机都收”……翻开近期陈立群的微信朋友圈,记者留意到,他已经逐渐告别“水货”行业,将“战场”转到国行“靓机”。

  “二手手机新旧程度不同,价格也有所不同。按外观成色区分,可以分为大花机、小花机、靓机、充新机。只要屏幕花了,都不能算是靓机,只能划为花机。充新机就是有使用痕迹但可忽略不计。”“背包客”钟杰介绍,作为“搬运工”,客户需要什么货,他们就拿什么货,但要保证是原装机。对从业者和客户而言,国行“靓机”的售后相对“水货”更加便捷。

  去年7月,国家发展改革委印发的《“十四五”循环经济发展规划》明确要规范发展二手商品市场,同时鼓励“互联网+二手”模式发展,鼓励平台企业引入第三方二手商品专业经营商户,提高二手商品交易效率,推动线下实体二手市场规范建设和运营。国家不断释放利好政策,对二手手机回收行业发展起到了助推作用。

  成立工作室、开二手手机店、入驻互联网二手交易平台……记者了解到,华强北的档口老板和“背包客”们正以多种方式开辟自己的二手手机回收和交易业务渠道。

  线上销售,“小单快跑”

  将档口退租后,林冲锋尝试线上销售,试图通过短视频社交软件积累客户。“我在社交平台以视频形式分享基本的手机维修知识以及不同型号手机的小技能,吸引了一些粉丝,有少量发展成了客户。”林冲锋说。

  记者在短视频平台搜索“背包客”,发现有不少华强北从业者以视频形式介绍如何购买性价比高的二手手机以及手机摄影技巧、维修技能等。这些期望通过线上销售谋求转型的“背包客”中,既有粉丝数量寥寥者,也有人积累了近20万粉丝。“粉丝中大部分人对二手手机感兴趣,当有购买需求的时候,自然会找到关注的博主。”林冲锋如是说。

  此外,也有一些手机摊贩尝试销售品牌新机。与飞扬时代大厦不同的是,华强北远望商城主要销售各品牌新机,是全球最大的“一站式”手机、数码产品采购中心。

  在远望商城租有档口的叶先生告诉记者,他们属于经销商,相当于做多个品牌手机的批发业务。经销商能从厂家、代理商处以较低价格拿货,主要客户是电商平台的店家。“与‘水货’相比,利润肯定低一点,但属于合法经营,‘小单快跑’,这也是不错的行业。”

  (应采访对象要求,文中人物均为化名)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

快三大发地图